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Abstract

The abilities of three types of turbulence models
to accurately predict the e�ects of curvature on ow
in a U-duct are studied. An explicit algebraic stress
model performs better than one- or two-equation lin-
ear eddy viscosity models, although it is necessary to
fully account for the variation of the production-to-
dissipation-rate ratio in the algebraic stress model
formulation. None of the turbulence models fully
captures the suppressed turbulence near the convex
wall or enhanced turbulence near the concave wall.
However, a full Reynolds stress model predicts the
suppressed turbulence near the convex wall. Some
of the underlying assumptions used in the develop-
ment of algebraic stress models are investigated and
compared with the computed ow �eld from a full
Reynolds stress model. Through this analysis, the
assumption of Reynolds stress anisotropy equilib-
rium used in the algebraic stress model formulation
is found to be suspect in regions of strong curvature.

1 Introduction

Many ow �elds being calculated by computa-
tional uid dynamics (CFD) codes are so complex
that it can be di�cult to determine the source of
error in comparison with experiment. For example,
the ow over a multi-element airfoil contains a wide
variety of challenging physical processes, including
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conuent boundary layers, wakes in adverse pressure
gradient, separated ows, possible unsteady ow,
possible shock/boundary layer interactions, and sig-
ni�cant streamline curvature. Current state-of-the-
art CFD codes do not predict certain aspects of
the physics of multi-element airfoil ows accurately
enough for design studies.1 Turbulence models are
often assigned the blame, but due to the complexi-
ties of the multi-element ow �eld it is not certain
why the models are de�cient. (In fact, many other
factors may contribute, such as improper transition
modeling or lack of 3-D e�ects in 2-D computations.)
For turbulence model developers to determine how
to improve their models, it is important to isolate
and quantify the various e�ects of signi�cance to the
problem of interest, and to evaluate turbulence mod-
els in such ows.

For example, the ow o� the main element on
a multi-element con�guration can turn as much as
30�{40� as it passes over the ap. It is possible that
such turning (convex curvature) has an impact on
the Reynolds shear stresses in that region, which in
turn may a�ect the mean ow over the ap. Pre-
liminary comparisons of computed Reynolds shear
stresses with experimentally measured values in the
ap region indicate that some discrepancies exist.2

Currently, it is uncertain whether the disagreement
is due to the turbulence model itself, or whether
other factors are to blame. In particular, note that
the �=R parameter (boundary layer thickness over
radius of curvature) that de�nes the turning of the
ow over the ap can be on the order of 0.01 to
0.1, depending on the particular con�guration and
whether the main element wake is included in the
determination of �. In general, �=R < 0:01 repre-
sents very mild curvature, whereas 0:1 < �=R < 1
represents moderate to strong curvature.3

Monson and Seegmiller4 and Monson et al.5 per-
formed a nominally 2-D experiment on ow through
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a U-duct (with aspect ratio 10), and evaluated the
abilities of several turbulence models to predict both
the mean ow (velocity pro�les, skin friction, and
surface pressure) and turbulence quantities (turbu-
lent kinetic energy and Reynolds shear stress). The
curvature was strong in this setup, with �=R ap-
proximately 0.5 around the inner wall. The U-duct
is representative of many internal ows of engineer-
ing interest, such as ow in the turnaround duct in
the Space Shuttle main engine powerhead. However,
the U-duct is also of interest for any ow, internal
or external, that experiences curvature, because it
is a well-de�ned nominally 2-D experiment. It is an
ideal test case to isolate the e�ect of curvature and
to evaluate the ability of existing turbulence mod-
els to predict the physics of curvature. Many other
curved duct ow experiments have been performed,
e.g., Refs. 6{10, but most either do not explicitly
de�ne the outer wall geometry or else have lower as-
pect ratios (and hence more signi�cant 3-D e�ects).
These ambiguities limit the usefulness of such stud-
ies for turbulence model validation.

In Monson et al.,5 seven isotropic eddy viscosity
turbulence models (one algebraic and six K-" mod-
els) evaluated against the Monson and Seegmiller4

data met with varying degrees of success regard-
ing prediction of skin friction, but none of them
consistently predicted the measured mean velocities
downstream of the turn or the turbulence quantities
in or downstream of the turn. Luo and Lakshmi-
narayana11 computed the same con�guration using
four levels of turbulence model approximations: a
linear eddy viscosity K-" model, a nonlinear (NL)
K-" model, an implicit algebraic Reynolds stress
model (ARSM), and a full Reynolds stress model
(RSM). All models were linked to a near-wall one-
equation model near y+ = 70. The eddy viscosity
model predicted higher Reynolds shear stress over
the convex wall, resulting in a smaller extent of sep-
aration. The other models were better, but only
the RSM predicted nearly complete suppression of
Reynolds shear stress over the convex wall as seen
in the experiment. All four models predicted too
slow a recovery downstream of ow reattachment.

Many other computations of turbulent curved
ows for similar con�gurations have been done, only
a few of which are mentioned here. Rodi and
Scheuerer12 examined three extensions to the K-"
model, including an algebraic stress model without
curvature-speci�c empiricism. They found that this
algebraic stress model gives the best overall agree-
ment in the curved part of the ow. Luo and Laksh-
minarayana13 found that although a Reynolds stress
model can successfully capture the large damping of

turbulence near a convex wall, it underpredicts the
enhancement of turbulence near a concave wall; in
order to capture the ampli�cation, they concluded
that the standard " equation needs to be modi�ed.
Iacovides et al.14 evaluated an algebraic stress model
and Shima15 evaluated a Reynolds stress model;
both methods were found to be superior to linear
two-equation models for curved ows.
In Rumsey et al.,16 several turbulence models were

evaluated for multi-element airfoil ows. Two of
these models, the one-equation Spalart-Allmaras17

(S-A) and the two-equation Menter18 shear-stress
transport (SST) K-!, are isotropic eddy viscosity
models that are used extensively by the aerospace
community. The third model is the explicit alge-
braic stress model (EASM) of Gatski and Speziale.19

For the ow �elds explored in Rumsey et al.,16 all
three models showed minor di�erences from each
other, but they also each showed gross de�ciencies
in comparison with experiment, attributed primarily
to poor transition modeling over the slat. Because of
the gross de�ciencies, it proved to be impossible to
distinguish among the turbulence models themselves
or recommend areas for turbulence model improve-
ment.
In the current work, we apply the same three tur-

bulence models to ow in the 2-D U-duct, and inves-
tigate their ability to model the physics due to strong
curvature. Furthermore, recent advances in the ex-
plicit algebraic stress formulation20�23 are explored
in relation to the U-duct ow. Through this study,
ow �eld curvature | one of the component physi-
cal processes of possible importance in the ow over
multi-element con�gurations | is explored. Sepa-
rate on-going work focuses on other aspects, includ-
ing wake development in an adverse pressure gra-
dient and transition. By exploring the component
pieces, we hope to address speci�c de�ciencies in ex-
isting turbulence models and develop better turbu-
lence models in the future.

2 Description of the Codes

The computer code CFL3D24 solves the three-
dimensional, time-dependent, Reynolds averaged
Navier-Stokes equations with an upwind �nite-
volume formulation. It can solve ows over multiple-
zone grids that are connected in a one-to-one,
patched, or overset manner, and can employ grid
sequencing, multigrid, and local time stepping when
accelerating convergence to steady state. Upwind-
biased spatial di�erencing is used for the inviscid
terms, and ux limiting is used to obtain smooth so-
lutions in the vicinity of shock waves, when present.
Viscous terms are centrally di�erenced, and cross-
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di�usion terms are neglected. The ux-di�erence-
splitting (FDS) method of Roe25 is employed to ob-
tain inviscid uxes at the cell faces.
The CFL3D code is advanced in time with an im-

plicit approximate factorization method. The im-
plicit derivatives are written as spatially �rst-order
accurate, which results in block tridiagonal inver-
sions for each sweep. However, for solutions that uti-
lize FDS, the block tridiagonal inversions are further
simpli�ed using a diagonal algorithm with a spectral
radius scaling of the viscous terms.
The turbulence models are solved uncoupled from

the mean ow equations. Descriptions of the S-A
and SST turbulence models can be found in their
respective references,17;18 while a detailed descrip-
tion of the EASM is given in the next section.
The computer code ISAAC26 is also employed in

one portion of the current study. The ISAAC code is
functionally very similar to the CFL3D code, but it
possesses higher order turbulence models, including
RSMs. The turbulence models in ISAAC are solved
fully-coupled with the mean ow equations.

3 Algebraic Stress Model Methodology

The application of algebraic stress models (ASMs)
to a variety of ow problems has become common-
place. With this increase in use has also come a
variety of formulations. These formulations di�er in
the number of basis terms used in the tensor rep-
resentation and in the particular means by which
the ASM is implemented. The ASM used in this
study is based on the model originally developed
by Gatski and Speziale,19 but extended and imple-
mented based on a formulation developed by Jongen
and Gatski.27 The reader is referred to these earlier
studies for additional background.

3.1 General Algebraic Stress Model

The common starting point for the development
of ASMs is the modeled transport equation for the
Reynolds stress tensor �ij given by
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2�nn is the turbulence kinetic energy,

Dij is the turbulent transport and viscous di�usion
tensor, and fbSg = bijSji is the trace. The tensor
R = a1S when a linear pressure-strain correlation
model is assumed as well as an isotropic dissipation
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and the Reynolds stress anisotropy tensor is de�ned
as
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The coe�cients ai are directly related to the
pressure-strain correlation model used in closing the
stress transport equation. This study uses the SSG
pressure-strain model,28 which yields

a1 =
1

2

 
4

3
� C2

!
; a2 =

1

2
(2�C4) ;

a3 =
1

2
(2�C3) ; a4 = g�; � =

K

"
; (3)

and

g =

��
C1
1

2
+ 1

�
P

"
+
1

2
C0
1 � 1

��1

=

�
0
P

"
+ 1

��1

; (4)

where C0
1 = 3:4, C1

1 = 1:8, C2 = 0:36, C3 = 1:25,
and C4 = 0:4.
An implicit algebraic stress relation is obtained

from the modeled transport equation for the
Reynolds stresses (Eq. (1)) when the following two
assumptions are made:

Dij =
�ij
2K
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Equation (6) is equivalent to requiring that the tur-
bulence has reached an equilibrium state, Db

Dt
= 0.

With these assumptions, the left side of Eq. (1) van-
ishes, and the equation becomes algebraic:
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Equation (7) has to be solved for b and is an im-
plicit equation. For the case R = a1S, an explicit
solution of Eq. (7) has been obtained by Gatski and
Speziale19 for 2-D mean ows in the form

b = �1S+�2(SW�WS)+�3
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3
American Institute of Aeronautics and Astronautics



where the �i are scalar coe�cient functions of the
invariants �2(=

�
S2
	
) and R2(= �

�
W2

	
=
�
S2
	
).

(Here, R2 is a nondimensional ow parameter that
is very useful for characterizing the ow;22;29 for ex-
ample, for a pure shear ow R2 = 1, whereas for
a plane strain ow R2 = 0.) A new methodology
for identifying the coe�cients �i, such that Eq. (8)
is the solution of the general stress relation Eq. (7),
will now be derived.

3.2 Explicit Solution

Consider a three-term tensor representation given
by

b =
3X

n=1

�nT
(n): (9)

with the three-term tensor basis T(m),

T(1) = S; T(2) = SW �WS;

T(3) = S2 �
1

3
fS2gI: (10)

As discussed in Jongen and Gatski,27 higher term
bases (N � 5) are also possible, but we consider
here only the three-term basis, which is exact for
2-D ows.
Equation (7) can be solved �a la Galerkin by pro-

jecting this algebraic relation onto the tensor basis
T(m) itself. For this, we form the scalar product of
Eq. (7) with each of the tensors T(m), (m=1; 2; 3).
This leads to the following system of equations:
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where, for example, the scalar product is de�ned
as (T(n);T(m)) = fT(n)T(m)g. In a more compact
form,
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which, when inverted, leads to the following expres-
sions for the representation coe�cients
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of equations is the general solution valid for two-
dimensional mean ow and for any arbitrary (sym-
metric traceless) tensor R.
As noted previously, when a linear pressure-strain

correlation model is assumed as well as an isotropic
dissipation rate, then R = a1S. This expression
leads to a right-hand side for Eq. (12) proportional
to

(R;T(m)) =

2
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3
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This result can be related to previous formulations
involving the three-term basis. From Eq. (3), the
coe�cient a4 is dependent on g and as such has a
direct dependency on the ratio P=" from Eq. (4).
The solution proposed by Gatski and Speziale19 for
the explicit algebraic stress model �xed the value of
g. Using Eq. (18) in Eqs. (15){(17) and substituting
into Eq. (9) leads to the tensor representation for b
obtained by Gatski and Speziale19

b = ��t
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� 2a3a4

�
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1

3
fS2gI

��
; (19)

where

��t =
�3a1a4

3� 2a23a
2
4�

2 + 6a22a
2
4�

2R2
: (20)

In an alternative approach proposed by Ying and
Canuto20 and Girimaji,21 the value of g is not �xed;
the variation of the production-to-dissipation-rate
ratio in the ow is accounted for in the formula-
tion. This approach can also be accounted for in
the present formulation. It is easily shown that the
production-to-dissipation-rate ratio is given by

P

"
= �2 fbSg �: (21)

Previously, it has also been shown22,27 that the in-
variant fbSg is directly related, for 2-D ows, to the
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coe�cient �1 appearing in the tensor representation
through

fbSg = �1�
2: (22)

From Eqs. (3) and (4), the coe�cient a4 can then be
written as

a4 =
�
1 � 20�1�

2�
��1

�: (23)

The dependency of a4 on the production-to-
dissipation-rate ratio through �1 makes both sides
of Eq. (15) functions of �1. This dependency results
in a cubic equation for �1 given by
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Even with this more complicated expression for �1,
the expansion coe�cients of the nonlinear terms,
�2 and �3, retain the same functional dependency
on �1 as before. When expressed in terms of the
production-to-dissipation-rate ratio with R = a1S,
Eq. (24) can be shown22 to be equivalent to earlier
results.20,21

Recent results22,30 as well as the results from this
study have shown that robustness characteristics
and predictive performance is improved when the
variation of the production-to-dissipation-rate ratio
is allowed. Thus Eq. (24) (with R = a1S) is cur-
rently solved for �1. Previously,20,21 the selection
of the proper root for the solution of Eq. (24) was
done on the basis of continuity arguments. Here, the
proper choice for the solution root is based on the
asymptotic analysis of Jongen and Gatski.23 It was
found that the root with the lowest real part leads
to the correct choice for �1. The remaining expan-
sion coe�cients �2 and �3 are then extracted from
Eqs. (16) and (17).
The explicit tensor representation given in Eq. (9)

is coupled with a K-" two-equation model. The
transport equations for the turbulent kinetic energy
K and dissipation rate " are
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(26)
where � is the kinematic viscosity, �t = C�K� is a
turbulent eddy viscosity, and

P = ��ij
@ui
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= �2fbSgK; (27)
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; � = 0:41;

C"1 = 1:44; C"2 = 1:83; C� = 0:096; (29)

and d is the distance to the nearest wall. These
transport equations along with the explicit tensor
expansion for b represent the EASM used in this
study.

4 Results

The U-duct con�guration is shown in Fig. 1. The
turn has an inner radius of ri = 1:91 cm and an outer
radius of ro = 5:72 cm. The �nest grid employed is
417� 153 and extends from x=H = �4 upstream of
the bend to x=H = 13:12 downstream. The mini-
mum normal spacing at the walls is 1:0� 10�5 cm,
which yields an average y+ value of less than 0.2.
Coarser grids, used to investigate grid sensitivity, are
formed from the �ne grid by successively eliminat-
ing every other grid point. (The grid shown in the
�gure is a part of the medium-level 209 � 77 grid.)
The nominal Mach number for this ow is M = 0:1,
and the Reynolds number per cm is Re = 262; 467
(which corresponds to a Reynolds number based on
channel width H of 1 million).

At the upstream boundary, the u-velocity pro�le
is set based on the experimentally measured skin
friction and boundary layer thickness. It is also
imperative that the turbulence quantities be set at
the inow to match the experimental levels at the
same location. The K and " values at the upstream
boundary are speci�ed in a way similar to that used
by Monson et al.,5 as follows. In the near wall re-
gion (y+ < 4), the values for K are obtained from
the expression K+ = 0:05(y+)2. The peak K is
speci�ed to match experiment, and is assumed to
be at y+ = 20. The value of " is computed from

" = C
3=4
� K3=2=Lm, with Lm = �y in the inner re-

gion and Lm = 0:09� in the outer region. Also at
the upstream boundary, the density is speci�ed at
�=�ref = 1, and the pressure is extrapolated from
the interior of the grid. At the outow boundary,
pressure is speci�ed at p=pref = 1, and all other
quantities are extrapolated from the interior of the
grid.

4.1 Grid Sensitivity Study

Solution sensitivity to grid density is explored in
Figs. 2 through 4. Figure 2 shows the inner wall
skin friction coe�cient using the EASM turbulence
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model on three grids. The s in this �gure indi-
cates the distance of the channel centerline from
a reference point approximately 83 cm upstream
of the start of the bend. Except in the separated
ow region, there is very little di�erence between
the medium and �ne grid results. The coarse grid
(105� 39) yields signi�cant di�erences from the two
�ner grids even outside of the separated region. Re-
sults using other turbulence models show generally
similar or smaller grid sensitivities.

Flow �eld quantities upstream of separation gen-
erally show little or no sensitivity to grid density
on the three grid levels tested. For example, Fig. 3
shows the Reynolds shear stress across the channel
at 90� in the bend using two di�erent turbulence
models (uref is the nominal velocity corresponding
to Mref = 0:1, and dist = 0 at the inner wall).
Results from all three grids are plotted in the �g-
ure; there is almost no di�erence in the individual
results on any of the grid levels. However, at and
downstream of the separated region, results do show
sensitivity to the grid. Figure 4 shows the Reynolds
shear stress at x=H = 2 downstream of the bend.
For both turbulence models shown, the maximum
u0v0 magnitude near the inner wall increases as the
grid density is increased.

For the remainder of the study, all results (with
one exception) were obtained using the �ne grid only.
Based on the results of this grid sensitivity study,
we are con�dent that even the medium grid level is
�ne enough to capture the essential physics of this
case, particularly upstream of the separated region
(which is our primary focus in this study). Use of
the �ne grid adds an additional level of con�dence
that any di�erences between computations and ex-
periment are due to the modeled physics and not
due to numerical discretization errors.

4.2 Results Using Three Turbulence Models

The three turbulence models used in this study
represent three successive levels of representation in
describing the development and evolution of the tur-
bulence. The EASM represents the highest level;
it is derived directly from the RSM as described
above, and is implemented in a two-equation K-
" formulation. The SST model is a two-equation
linear eddy-viscosity model, and the S-A model is
a one-equation linear eddy-viscosity model. (The
RSM, results of which are discussed below in a sepa-
rate subsection, utilizes seven equations to solve for
the turbulence. Its results are not included in this
section because the RSM is generally too expensive
and very sti�, particularly with wall-bounded ows.
Therefore it is not considered to be a viable model at

the present time for general use with complex con-
�gurations such as multi-element airfoils.)

All three turbulence models do an excellent job
predicting the ow upstream of the turn. At x=H =
�2, both mean ow pro�les and turbulence quanti-
ties are in excellent agreement with experiment. For
example, Fig. 5 shows the Reynolds shear stress at
this upstream location. Near the start of the bend,
at x=H = 0 (0�), however, computed Reynolds shear
stresses are already showing signi�cant di�erences
from the experimentally measured levels (Fig. 6). In
particular, the turbulence models all predict a pos-
itive peak near the convex inner wall followed by a
negative peak further from the wall; the experiment
shows only positive values in this region. Although
not shown, all models at this x=H = 0 (0�) sta-
tion still predict the turbulent kinetic energy and
mean streamwise velocity in good agreement with
each other and with experiment.

Figures 7, 8, and 9 showmean streamwise velocity,
Reynolds shear stress, and turbulent kinetic energy,
respectively, at the 90� position halfway around the
bend. (Note thatK is not given for S-A, because it is
not explicitly computed for the one-equation model.)
The results for the three turbulence models are very
similar near the convex wall: none of the models pre-
dict zero (complete destruction of) Reynolds shear
stress, as seen in the experiment (Fig. 8). In the
outer half of the channel, all models underpredict
the magnitude of both u0v0 and K. However, the
EASM predicts higher levels than the two eddy vis-
cosity models, in better agreement with experiment.
The poor predictions of the turbulence quantities at
the 90� station in the bend do not a�ect the predic-
tions of the mean velocity pro�les there. All models
predict similar velocity pro�les (Fig. 7). Overall,
these results are in reasonable agreement with ex-
periment, although the velocity magnitude near the
inner wall is slightly overpredicted and the velocity
magnitude near the outer wall is underpredicted.

Separation and reattachment locations are given
in Table 1. Results from Luo and Lakshmi-
narayana11 are also shown for comparison. The S-A,
SST, and EASM all predict the separation location
too far downstream in comparison with experiment,
but predict comparable separation lengths in agree-
ment with the upper range of the data. Separated
velocity pro�les are shown in Fig. 10 at location
x=H = 0:5. None of the models predict the correct
magnitude of maximum reverse ow, but the EASM
does the best job predicting the overall mean ow
pro�le.

Downstream of reattachment, the ow �eld recov-
ers from the e�ects of separation. Considering that
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none of the models predict the turbulence correctly
in the bend, predictions downstream are likely to
be incorrect anyway (because each model is \recov-
ering" from incorrect upstream levels). Therefore,
in the interest of conserving space, we do not show
these results here. The results are quantitatively
very similar to the NLK-" and ARSM results shown
in Ref. 11. We do note, however, that all three of the
turbulence models exhibit a too-slow recovery from
separation. This trend was also noted in Ref. 11,
and is a well-recognized feature of most turbulence
models in use today.31

Pressure coe�cients along the inner and outer wall
are shown in Figs. 11 and 12, and skin friction co-
e�cients are shown in Figs. 13 and 14. Overall, the
EASM predicts these levels downstream of the bend
in better agreement with experiment than the pre-
dictions of the other models.

4.3 EASM Analysis

The EASM used in this study accounts for the
variation of the production-to-dissipation-rate ratio;
i.e., g (Eq. (4)) is variable. As will be shown, if
g is held constant at 0.233 (corresponding to the
equilibrium value of P=" = 1:886 for homogeneous
shear ow), predictions of turbulence quantities in
the curvature region of this ow �eld are poor.

For example, computed Reynolds shear stresses at
90� in the bend using EASM with constant g = 0:233
are shown in Fig. 15 in comparison with results from
the variable g model. The constant g model dramat-
ically overpredicts the magnitudes of u0v0 near the
inner wall in this region. (K, not shown, is also sig-
ni�cantly overpredicted near the convex wall.) This
behavior is very similar to that exhibited by the
eddy viscosity K-" model used by Luo and Lakshmi-
narayana.11 The constant g model also yields a sig-
ni�cantly smaller region of separation (s=H = 1:34)
in comparison with the other models. The sep-
aration angle is 171� and reattachment occurs at
x=H = 1:26.

As shown in Fig. 16, the computed value of P="
is far from 1 (which is the equilibrium value in the
log-layer of a channel ow) over much of the chan-
nel outside of the inner-wall log-layer at the stations
where curvature is present. Figure 17 is a plot of
the ow parameter R2 as a function of y+ at the
same three locations shown in the previous �gure.
At the x=H = �2 station well upstream of the bend,
R2 � 1 (except in the middle of the channel), repre-
senting pure shear ow, as expected. Also, R2 � 1
within the lower part of the log-layers at all three
stations. However, R2 deviates signi�cantly from 1
for the ow outside y+ � 500 at the two stations

in the bend. At both locations, R2 approaches 0 at
large y+, representing plane strain ow.

Figures 18 and 19 show plots of �� as a function
of P=" for the EASM with variable g and constant
g, respectively. The symbols show the computed
values, and the solid and dashed lines show the the-
ory22 for two cases of R2 = 0 and R2 = 1. Compar-
ing these two �gures, it is seen that the computed
levels for each model (most of whose values of R2

are near either 0 or 1) agree well with the theory, as
they should. Furthermore, the theoretical curves for
the two models are very similar for roughly �� < 4,
but they deviate signi�cantly above this level. For
this ow, in the straight-wall sections of the duct
or in the near-wall log-layer region where R2 � 1,
�� remains less than 4 and the two models behave
similarly. However, the two models behave quite
di�erently outside of the log-layer in the curved sec-
tion of the duct where R2 approaches 0, because ��
can be considerably larger than 4 there. Because �1

is proportional to �(P=")=�2 (from Eqs. (21) and
(22)), the EASM with constant g predicts signi�-
cantly larger levels of ��t outside the log-layer in the
curved region of the ow than EASM with variable
g. This is the source of the larger predicted u0v0

peak near the inner wall for EASM (constant g) in
Fig. 15.

4.4 Comparison with RSM

Finally, the U-duct ow is solved with an RSM
using the ISAAC code on the 209 � 77 grid. Our
focus is not to compare global results, but rather to
explore in detail the behavior near convex curvature.
Results at 90� in the bend are shown in comparison
with the EASM result using CFL3D in Fig. 20. (Al-
though not shown, EASM in ISAAC yields results
similar to those of EASM in CFL3D.) The RSM suc-
cessfully suppresses the Reynolds shear stress near
the inner wall, in better agreement with experiment.
These results are also consistent with Ref. 11. Fig-
ure 21 compares the locus of solution points for RSM
with those of EASM at 90� in the bend. For clarity,
only points at which R2 is close to zero are shown
(RSM and EASM give very similar results within
the log-layer, where R2 is close to 1). It is clear that
the EASM is not mimicking the RSM outside the
log-layer in the curvature region.

Evidently, one or more of the assumptions that
go into the derivation of the EASM is causing the
model to deviate from the RSM result for this ow
in the curvature region. Recall that two of the pri-
mary assumptions in developing the algebraic rela-
tionship are given in Eqs. (5) and (6). Therefore,
we scrutinize the computed levels of each of these
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terms from the RSM solution. Figure 22 shows
contours ofDb11=Dt (nondimensionalized by L=a1)
near the start of the bend. Other Dbij=Dt terms are
of similar magnitude. Near x = 0 (0� in the bend),
Db11=Dt is negative (at a maximum level of about
�0:01), followed by a positive peak at a maximumof
approximately 0:012 somewhat downstream. These
levels of Db11=Dt are of the same order of magni-
tude as the nondimensional a1S11 levels at the same
locations (Fig. 23), which indicates that the �rst
term in Eq. (1) (= Db=Dt) is probably important in
this region of the ow and should not be neglected.
Although not shown, the Dij � (�ij=2K)Dnn terms
computed from the RSM solution are very small in
comparison with the Db=Dt terms, of order 10�8.
Therefore, it is not expected that neglecting them in
the derivation of the EASM has any impact for this
ow �eld.

5 Conclusions

The abilities of three types of turbulence models
to predict 2-D curvature e�ects, which may be im-
portant for high-lift ow �elds, were investigated for
a model test problem. It was shown that an explicit
algebraic stress model performs better than one- or
two-equation eddy viscosity models, provided that
the variation of the production-to-dissipation-rate
ratio in the ow is accounted for in the formula-
tion. Surface pressure and skin friction were also
predicted best by this model. Theoretical analysis
of the explicit algebraic stress model provided some
insight into the di�erences in the behavior of this
model in the curved region of the ow when g is
held constant.

None of the one- or two-equation turbulence mod-
els used in this study captured the full extent of
suppressed turbulence near the convex wall or en-
hanced turbulence near the concave wall. However,
a full Reynolds stress turbulence model successfully
suppressed turbulence near the convex wall. Some
of the assumptions that go into the derivation of the
explicit algebraic stress model were investigated and
compared with the computed ow �eld from the full
Reynolds stress model. Through this analysis, the
algebraic model assumption that Dbij=Dt = 0 was
found to be suspect in the strong curvature region.

References

1. Lynch, F. T., Potter, R. C., and Spaid, F. W.,
\Requirements for E�ective High Lift CFD," In-
ternational Council of the Aeronautical Sciences
(ICAS) proceedings, 20th Congress, Vol. 2, AIAA,
Reston, VA, 1996, pp. 1479{1492.

2. Ying, S. X., Spaid, F. W., McGinley, C. B.,
and Rumsey, C. L., \Investigation of Conuent
Boundary-Layers in High-Lift Flow," AIAA Pa-
per 98-2622, June 1998.

3. Patel, V. C., and Sotiropoulos, F., \Longitudinal
Curvature E�ects in Turbulent Boundary Lay-
ers," Prog. Aerospace Sci., Vol. 33, 1997, pp. 1{
70.

4. Monson, D. J., and Seegmiller, H. L., \An Ex-
perimental Investigation of Subsonic Flow in a
Two-Dimensional U-Duct," NASA TM 103931,
July 1992.

5. Monson, D. J., Seegmiller, H. L., McConnaughey,
P. K., and Chen, Y. S., \Comparison of Ex-
periment with Calculations Using Curvature-
Corrected Zero and Two-Equation Turbulence
Models for a Two-Dimensional U-Duct," AIAA
Paper 90-1484, June 1990.

6. So, R. M. C., and Mellor, G. L., \Experiment on
Convex Curvature E�ects in Turbulent Boundary
Layers," J. Fluid Mech., Vol. 60, Part 1, 1973, pp.
43{62.

7. Gillis, J. C., and Johnston, J. P., \Turbulent
Boundary-Layer Flow and Structure on a Con-
vex Wall and its Redevelopment on a Flat Wall,"
J. Fluid Mech., Vol. 135, 1983, pp. 123{153.

8. Kim, W. J., and Patel, V. C., \An Experimental
Study of Boundary-Layer Flow in a Curved Rect-
angular Duct," ASME Fluids Engineering Con-
ference, FED-Vol. 146, American Society of Me-
chanical Engineers, New York, 1993, pp. 13{28.

9. Launder, B. E., and Loizou, P. A., \Laminariza-
tion of Three-Dimensional Accelerating Bound-
ary Layers in a Curved Rectangular-Sectioned
Duct," Int. J. Heat and Fluid Flow, Vol. 13, No.
2, 1992, pp. 124{131.

10. Schwarz, A. C., and Plesniak, M. W., \Convex
Turbulent Boundary Layers with Zero and Favor-
able Pressure Gradients," J. of Fluids Engineer-
ing, Vol. 118, Dec. 1996, pp. 787{794.

11. Luo, J., and Lakshminarayana, B., \Prediction
of Strongly Curved Turbulent Duct Flows with
Reynolds Stress Model," AIAA Journal, Vol. 35,
No. 1, 1997, pp. 91{98.

12. Rodi, W., and Scheuerer, G., \Calculation of
Curved Shear Layers with Two-Equation Turbu-
lence Models," Phys. Fluids, Vol. 26, No. 6, 1983,
pp. 1422{1436.

8
American Institute of Aeronautics and Astronautics



13. Luo, J., and Lakshminarayana, B., \Analysis of
Streamline Curvature E�ects on Wall-Bounded
Turbulent Flows," AIAA Journal, Vol. 35, No.
8, 1997, pp. 1273{1279.

14. Iacovides, H., Launder, B. E., Loizou, P. A.,
and Zhao, H. H., \Turbulent Boundary-Layer De-
velopment Around a Square-Sectioned U-Bend:
Measurements and Computation," J. of Fluids
Engineering, Vol. 112, Dec. 1990, pp. 409{415.

15. Shima, N., \Prediction of Turbulent Boundary
Layers with a Second-Moment Closure: Part II
{ E�ects of Streamline Curvature and Spanwise
Rotation," J. of Fluids Engineering, Vol. 115,
Mar. 1993, pp. 64{69.

16. Rumsey, C. L., Gatski, T. B., Ying, S. X., and
Bertelrud, A., \Prediction of High-Lift Flows Us-
ing Turbulent Closure Models," AIAA Journal,
Vol. 36, No. 5, 1998, pp. 765{774.

17. Spalart, P. R., and Allmaras, S. R., \A One-
Equation Turbulence Model for Aerodynamic
Flows," La Recherche Aerospatiale, No. 1, 1994,
pp. 5{21.

18. Menter, F. R., \Improved Two-Equation
k-! Turbulence Models for Aerodynamic Flows,"
NASA TM 103975, Oct. 1992.

19. Gatski, T. B., and Speziale, C. G., \On Explicit
Algebraic Stress Models for Complex Turbulent
Flows," J. Fluid Mech., Vol. 254, 1993, pp. 59{78.

20. Ying, R., and Canuto, V. M., \Turbulence Mod-
elling over Two-Dimensional Hills Using an Al-
gebraic Reynolds Stress Expression," Boundary-
Layer Meteorology, Vol. 77, 1996, pp. 69{99.

21. Girimaji, S. S., \Fully Explicit and Self-
Consistent Algebraic Reynolds Stress Model,"
Theoret. Comput. Fluid Dynamics, Vol. 8, 1996,
pp. 387{402.

22. Jongen, T., and Gatski, T. B., \A New Ap-
proach to Characterizing the Equilibrium States
of the Reynolds Stress Anisotropy in Homoge-
neous Turbulence," Theoret. Comput. Fluid Dy-
namics, Vol. 11, 1998, pp. 31{47. Erratum: The-
oret. Comput. Fluid Dynamics, Vol. 12, 1998, pp.
71{72.

23. Jongen, T., and Gatski, T. B., \Time Evolution
of Modeled Reynolds Stresses in Planar Homoge-
neous Flows," NASA TM-97-206265, Dec. 1997.

24. Krist, S. L., Biedron, R. T., and Rumsey, C.
L., \CFL3D User's Manual (Version 5.0)," NASA
TM-1998-208444, June 1998.

25. Roe, P. L., \Approximate Riemann Solvers, Pa-
rameter Vectors, and Di�erence Schemes," J.
Comput. Phys., Vol. 43, 1981, pp. 357{372.

26. Morrison, J. H., \A Compressible Navier-Stokes
Solver With Two-Equation and Reynolds Stress
Turbulence Closure Models," NASA CR-4440,
May 1992.

27. Jongen, T., and Gatski, T. B., \General Explicit
Algebraic Stress Relations and Best Approxima-
tion for Three-Dimensional Flows," Int. J. Engr.
Sci., Vol. 36, 1998, pp. 739{763.

28. Speziale, C. G., Sarkar, S., and Gatski, T.
B., \Modeling the Pressure-Strain Correlation of
Turbulence: an Invariant Dynamical Systems Ap-
proach," J. Fluid Mech., Vol. 227, 1991, pp. 245{
272.

29. Astarita, G., \Objective and Generally Appli-
cable Criteria for Flow Classi�cation," J. Non-
Newtonian Fluid Mech., Vol. 6, 1979, pp. 69{76.

30. Jongen, T., Machiels, L., and Gatski, T. B.,
\Predicting Noninertial E�ects with Linear and
Nonlinear Eddy-Viscosity and Algebraic Stress
Models," Flow, Turbulence and Combustion, To
Appear, 1999.

31. Johnson, D. A., Menter, F. R., and Rumsey,
C. L., \The Status of Turbulence Modeling for
External Aerodynamics," AIAA Paper 94-2226,
June 1994.

Table 1. Location and extent of separation

Sep. Reattach. Sep. len.
�, deg. x=H L=H

S-A 170 1.72 1.81
SST 164 1.57 1.71
EASM 164 1.56 1.70
K-"11 172 0.72 0.79

NL K-"11 163 1.30 1.45
ARSM11 157 1.62 1.82
RSM11 147 1.55 1.84
Data4 150 1.0{1.5 1.26{1.76
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x/H=2x/H=0.5x/H=0 (180 deg)

90 deg

x/H=0 (0 deg) x/H= -2

H=3.81 cm

Figure 1. U-duct con�guration (portion of 209� 77
grid shown).

Figure 2. E�ect of grid density on inner surface skin
friction using EASM.

Figure 3. Computed Reynolds shear stress on
coarse, medium, and �ne grids for each of two tur-
bulence models at 90� in the bend.

Figure 4. Computed Reynolds shear stress on
coarse, medium, and �ne grids for each of two tur-
bulence models at x=H = 2.
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Figure 5. Turbulent Reynolds shear stress at x=H =
�2.

Figure 6. Turbulent Reynolds shear stress at 0� in
the bend.

Figure 7. Streamwise velocity at 90� in the bend.

Figure 8. Turbulent Reynolds shear stress at 90� in
the bend.
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Figure 9. Turbulent kinetic energy at 90� in the
bend.

Figure 10. Streamwise velocity at x=H = 0:5 in the
separated region.

Figure 11. Inner surface pressure coe�cient.

Figure 12. Outer surface pressure coe�cient.
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Figure 13. Inner surface skin friction coe�cient.

Figure 14. Outer surface skin friction coe�cient.

Figure 15. E�ect of constant g = 0:233 (Ref. 19)
in EASM on the Reynolds shear stress at 90� in the
bend.

Figure 16. Production-to-dissipation-rate ratio near
the inner wall computed at three stations.
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Figure 17. R2 levels near the inner wall computed
at three stations.

Figure 18. Locus of solution points at 0� in the bend
using EASM (variable g, Eq. (4)).

Figure 19. Locus of solution points at 0� in the bend
using EASM (constant g = 0:233, Ref. 19).

Figure 20. Comparison of RSM with EASM on the
Reynolds shear stress at 90� in the bend.

14
American Institute of Aeronautics and Astronautics



Figure 21. Locus of solution points at 90� in the
bend using EASM and RSM (only points at which
R2 < 0:2 are shown).
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Figure 22. Contour plot of Db11=Dt in the vicinity
of the start of curvature using RSM (ow is from
right to left).
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Figure 23. Contour plot of a1S11 in the vicinity of
the start of curvature using RSM (ow is from right
to left).
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